
Input / Output Timing and Programmable Delays, rev-D.

- A user programmable delay can be applied between the Image clock and the RF output channels 1..4 on iMS4 outputs J1..4.
- A user programmable delay can be applied between the Image clock and the SDIO outputs on J7.

The programmable delay features aids synchronization particularly when the laser repetition rate approaches the acoustics fill time of the AOD deflectors.

The delay features are demonstrated below showing both C++ and GUI examples.

To aid illustration, a non-typical 'V' profile LUT amplitude file is loaded, and the Image Point amplitudes alternate between two values. *Image Repeat* should be set to *Repeat Forever* (see page 3).

Notes:

- Channel scoped Compensation table is applied.
- To replicate an X-Y deflector application, the Image data is programmed as follows: Frequency: Ch1 = Ch2, Ch3 = Ch4, and Ch1 ≠ Ch3
 - Amplitude: $Ch1 = Ch2, Ch3 = Ch4, and Ch1 \neq Ch3$
- External Trigger at ~3KHz
- External Clock, as noted below.
- SDIO digital sync data outputs on J7 are <u>inverted</u> with respect to the Image file data value.

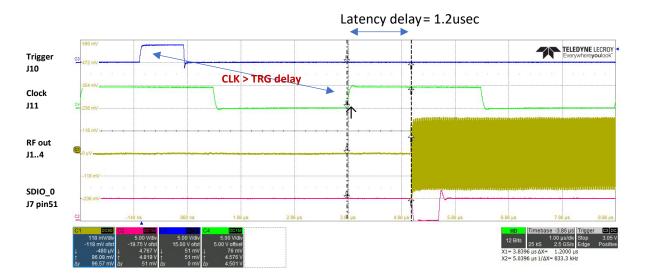
Bits-0...11 support < 2.5MHz Image data rates

- Two example Images are used, 10 and 26 points. In both cases the last point is set to 0% amplitude to give an "RF Off" terminating point.

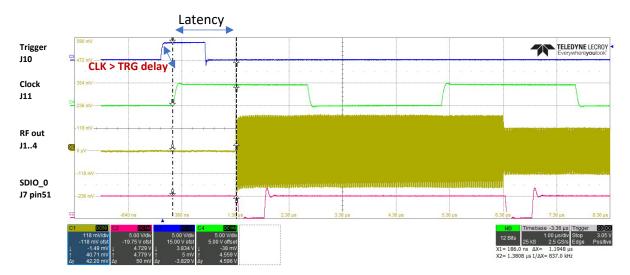
Specifically:

Ch1, Ch2	Active range; 100-140MHz, max amplitude = 100%, low amplitude = 10%,
	"Off" amplitude; 0% set with a frequency of 90MHz
Ch3, Ch4	Active range; 95-135MHz, max amplitude = 60%, low amplitude = 50%,
	"Off" amplitude; 0% set with a frequency of 85MHz

Default positive edge active is selected on external clock and trigger inputs.


IN ALL MODES:

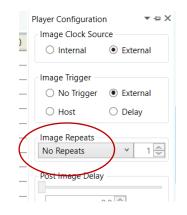
There is a static latency (or pipe-line) delay of ~1.2usec between the external clock input edge and the corresponding Image point output, irrespective of the clock rate.


In the plots below.' \uparrow ' indicates the first active clock edge after a valid external trigger.

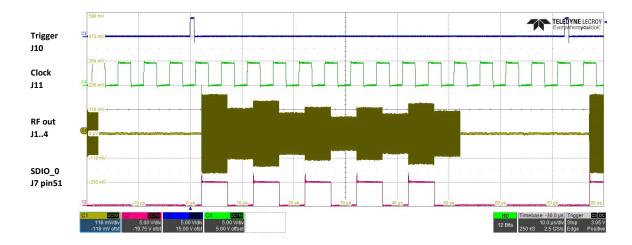
1: External Trigger and Clock relative timing

The first Image point is output after the first clock edge (J11) following a valid trigger signal (J10). In the trace below, SDIO is active. 500nsec *Digital Sync Pulse Length* and zero SDIO *Output Delay.*

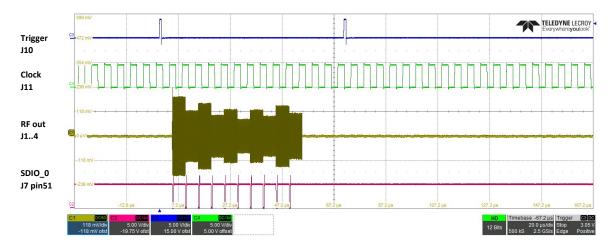
AN231108: Input-Output Timing and Programmable Delays rev-D


1.1 External Trigger > Output Jitter

Trigger to output update jitter = one Image (external or internal) clock period


2: Image Repeats

Typical case Image Repeats is set to Repeat Forever


When *Image Repeats* is set to *No Repeats*, then ONLY a single image is output per *PLAY* regardless of the number of subsequent triggers.

Case: Repeats

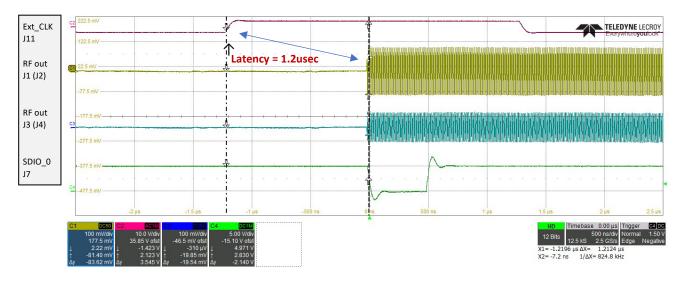
Case: No Repeats

3: Limiting case, minimum Image size

Image mode operation was originally designed for Image files containing >16 images points. However, with care, Image files down to >2 points can be used.

Consider one extreme example: External clock (J11) = 2.8MHz For reliable operation the maximum external trigger rate (J10) = ~200KHz SDIO set for Digital Sync Pulsed Output In this 2-point example. there is no termination image point with zero amplitude. The IMS4 continues to output the last image point frequency and amplitude until after the next trigger. External clocks External clock (J11) = 2.8MHz SDIO set for Digital Sync Pulsed Output In this 2-point example. there is no termination image point with zero amplitude. The IMS4 continues to output the last image point frequency and amplitude until after the next trigger. External clocks External clocks Exte			Ch1 Amplitude (%)	. Ch2 Frequency (MHz)		. Ch3 Frequency (MHz)		1	ch4 Amplitude (%)	. Sync Data (Di
Consider one extreme example: External clock (J11) = 2.8MHz For reliable operation the maximum external trigger rate (J10) = ~200KHz SDIO set for Digital Sync Pulsed Output In this 2-point example. there is no termination image point with zero amplitude. The IMS4 continues to output the last image point frequency and amplitude until after the next trigger. Latency delay = 1.2usec (Redundant clocks) ger ock 1 (Redundant clocks)	1							++		. 0x0FF
ger ck (Redundant clocks) (Redu	Consid Externa For reli maxim SDIO se In this termin amplitu the las	er one o al clock iable op um exto et for D 2-point ation in ude. Tho t image	extreme extreme extreme extreme extreme extreme exact the second strain the second s	xample: 3MHz er rate (J10 Pulsed Out there is no t with zero ntinues to o quency and) = ~200Kl tput		60.0000	Sync D Sync I Analo Ima Digita Digita Di Digita Digita Digita Digita Digita Digita Digita Digita Digita	ata Sata Settings g Sync Output Source A geAnalogA g Sync Output Source B geDigital I Sync Output Source geDigital I Sync Pulsed Output ALL Bit 0 Bit 4 Bit 1 Bit 5 Bit 2 Bit 6 Bit 3 Bit 7 al Sync Pulse Length 0.10 I Sync Output ut Delay 0.00	 ✓ ✓ ✓ ✓ ✓ Øit 8 Øit 9 Øit 10 Øit 11 Øit 11 ✓ ✓
			Lat	ency delay	= 1.2usec		(Redunda	nt clocks)		
D a 576 mV a 5	ger	734 mV	<u>,</u>			+				TELEDTINEL
)	418 mV								Everywhereyc
	ck	102 mV	TAPLE OF PROPERTY I				a k ka k ka k ka ka ka ka ka ka ka ka ka	nakinahila ilia,lika,lika		TICHT CHTICTT
-372 mV		56 mV () ()	tolistalis (iji				ildekleikekleikek	latini ta kini ka kin		ndalandaha.
2 -1 68 µs -1.18 µs -680 ns -181 ns 320 ns 820 ns 1.32 µs 1.82 µs 2.32 µs		214 mV			\	(X + (X + (Y + (Y + (Y + (Y + (Y + (Y +		1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

Image Point-1 clock edge

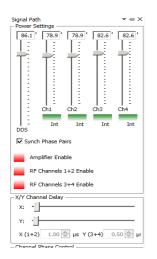

Image Point-2 clock edge

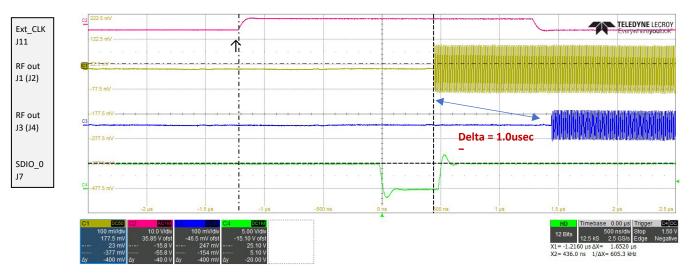
AN231108: Input-Output Timing and Programmable Delays rev-D

4: RF Output Channel Delay

• Latency or Pipeline Delay. All programmable delays = zero

Condition: Pulsed enabled SDIO; pulse width 500nsec, SDIO delay = 0nsec




• External Clock > RF Output Channel Delay

In the Isomet GUI, the RF output channel delay control is applied across channel pairs as shown right. This is a common requirement for X-Y AO beam-steered deflectors, where Ch1+2 (J1/J2) drives the X-axis, Ch3+4 (J3/J4) drives the Y-axis.

Condition: Ext-clock rate 200KHz. SDIO delay = Onsec

A: Excluding latency delay, programmed with: Clock to RF output channel delay on J1 = 500nsec Clock to RF output channel delay on J3 = 1500nsec Difference = +1000nsec

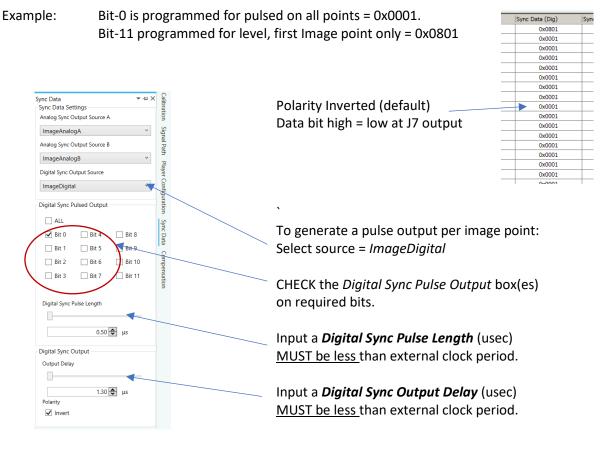
AN231108: Input-Output Timing and Programmable Delays rev-D

Condition: Ext-clock rate 200KHz, SDIO delay = 0nsec.

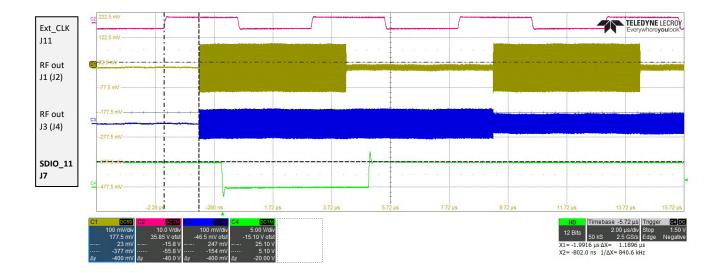
 B: Excluding latency delay, programmed with: Clock to RF output channel delay on J1 = 1000nsec Clock to RF output channel delay on J3 = 500nsec Difference = - 500nsec

5: External clock > SDIO Output Delay

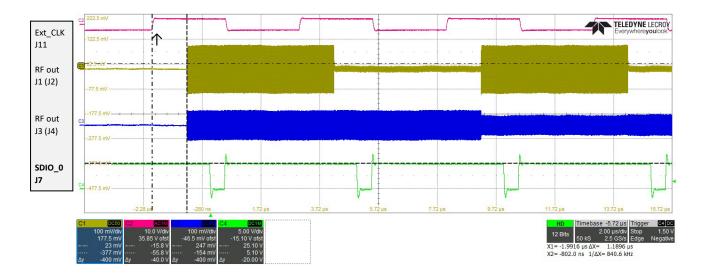
Condition: Ext-clock rate 200KHz, RF output channel delay = Onsec. Excluding latency delay, programmed with: Clock to SDIO output delay = 750nsec



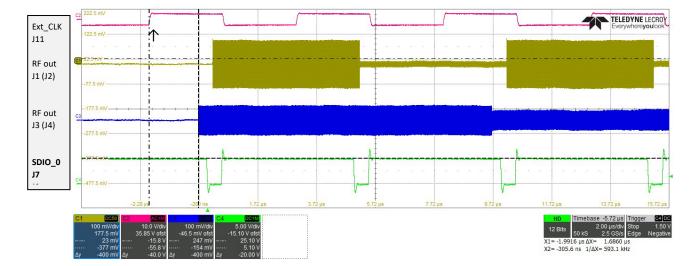
Next section describes SDIO characteristics in more detail


6: Sync Outputs J7

The default is level mode. 'Level' means the logic remains at constant state for the duration of the image point.


Unlike previous iMS4 build revisions, rev-D allows mixed SDIO output modes. Individual bits can be set for pulsed output.

Condition: Ext-clock rate 200KHz, RF output channel delay = 0nsec. Programmed with SDIO bit 11 = level, SDIO Output Delay = 0.75usec (not 1.3 as shown above)



Condition: Ext-clock rate 200KHz, RF output channel delay = 0nsec. Programmed with SDIO bit 0 = pulsed, SDIO pulse width 0.5usec, SDIO delay = 0.75usec

Note: the fixed 1.2usec latency from rising clock edge \uparrow to the active RF output, (no programmed Channel or RF delay)

As above, and programmed with RF output channel 1+2 delay = 1000nsec, channel 3+4 delay = 500nsec.

7: Associated C++ code, SDK v1.8.9

RF Channel delay

SignalPath sp(*myiMS);

```
int Dly12, Dly34; // delay value First ch pair, Second ch pair
sp.SetChannelDelay(std::chrono::nanoseconds(Dly12), std::chrono::nanoseconds(Dly34));
```

SDIO configure and delay

<pre>std::chrono::nanoseconds std::chrono::nanoseconds</pre>	 	pulsed pulsed	delay pulse w	vidth	
<pre>SignalPath SDOR(*myiMS);</pre>					

SDOR.AssignSynchronousOutput(SignalPath::SYNC_SINK::DIG,

SignalPath::SYNC_SRC::IMAGE_DIG);

// Rev-D bit configurable pulse or level SDIO
SDOR.ConfigureSyncDigitalOutput(SyDly, PW); // enable pulsed SDIO (delay, width)

8: Note: Maximum 2.5MHz rate SDIO output rate

2023-10-31 We have identified an issue with SDIO output when operating at Image clock rates above 2,5MHz, especially when the SDIO is programmed to change frequently within an image. This does not affect the RF outputs, which are still Ok up to the maximum of 3.5MHz.

- If the SDIO is not performing a critical function, this limitation may not be an issue.

- Depending on the application and how the SDIO is programmed, there may be few/no errors, but not with certainty.

- Increased rates are expected in future fireware releases. All revD firmware is field programmable.